
Lecture 1: Theory of the firm

• Technology

• Cost minimization

• Profit maximization

Let’s briefly mention one interesting issue before we start: why are there companies,
i.e. many individuals working together in one organization?
Exciting question which unfortuantely we have to postpone.
For the moment we accept the existence of companies as given and try to formalize
the environment they face (-> technology) and their objectives (cost minimization
or more generally profit maximization).
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Technology

Technology are the hard facts of life companies face. It hasn’t much to do with
economics (it’s rather engineering) but we need a formalization or description.
Think of it as a black box converting inputs into outputs.
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Since more than one output would be hard to handle, we will always assume that
companies produce only one output (or can be subdivided into units that do). That
is, we abstract from economies of scope (= synergies of producing several things
together).
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With only one output we can formalize the production process as a function
Y = f(K,L, ...) where Y is output quantity and K,L, ... are input quantities.

With only one input this is easy to depict graphically:
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But with more than one input 2-dimensional graphics become tricky.
For example, with 3 inputs we would have 4 dimensions (3 inputs plus output)
which would hardly fit onto a page.
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The case of 2 inputs is still manageable, however.
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Instead of the 3-dimensional production function (2 inputs + 1 output = 3) we
depict production isoquants which are defined by Ȳ = f(K,L) for different Ȳ s.
Same concept as altitude lines on geographical maps.
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Characteristics of technology

• Marginal Product: how does output change if we increase one input marginally.
mathematically:

MPK =
δf(K,L, ...)

δK

MPL =
δf(K,L, ...)

δL

If you think of the 2-input prod fct as a mountain this is its slope in one
direction.
The marginal product will usually be positive though decreasingly so. Diminishing
MP is a standard assumption.
In the extreme it could become negative if you send the 1000th farmhand onto
a field he/she might reduce output.

• Returns to scale: how does output change if we increase all inputs marginally,
i.e. scale up production in other words.
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mathematically (for homogeneous prod fcts):

f(λK, λL, λ...) ??? λf(K,L, ...)

In case the LHS > RHS we speak of increasing returns to scale (IRS), equality
corresponds to constant returns to scale (CRS), and LHS < RHS is called
decreasing returns to scale (DRS).
Again in terms of our 2-input production mountain, this tells us the slope if
we climb diagonally (increasing both inputs) — proportional to the increase in
inputs, or more/less than proportional. How does this concept relate to the
distances between isoquants?

• “free disposal” = more inputs cannot reduce output (one could throw inputs
away or dispose of them, after all)

• “no free lunch” = without inputs no positive output
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Cost Minimization

We assume/consider a company trying to achieve the following objective:
produce a given output quantity at minimal cost.

The company is a small player and takes prices (for inputs as well as output) as
given — no market power on either side.

Note that with one input this is really easy: the prod fct tells us how much of the
one and only input we need and at a given factor price this input quantity has its
cost. Not much of a minimization.

The problem becomes interesting only if production requires at least two inputs. In
fact, for simplicity, we will mostly limit ourselves to the case of two inputs. Then
the problem is finding the cheapest input mix resulting in the required output.
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Mathematically:

minK,L rK + wL (that’s the objective)

subject to (s.t. from now on):

Ȳ = f(K,L) (constrained by the hard facts of life)

We solve this constrained optimization problem by setting up the Lagrangean:

L = rK + wL+ λ(Ȳ − f(K,L))

these are the problem’s first order conditions (FOCs):

δL
δK

= r − λfK = 0

δL
δL

= w − λfL = 0
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dividing one by the other gives:

r

w
=
fK
fL
≡MRTS

where MRTS is shorthand for the marginal rate of technical substitution.

Note that we have two equations — the constraint as well as relative input price
equals MRTS — in two unknows (K and L). This system can be solved to obtain
the so-called conditional (b/c they are conditional on the output quantity) factor
demands:

K(w, r, Ȳ ) and L(w, r, Ȳ )

Gerald Willmann, Department of Economics, Universität Kiel 9



Graphically:

L

K

given Y
isocost

The slope of the isoquants is the MRTS (totally differentiating Ȳ = f(K,L) will
tell you that) while the slope of the isocost lines is just the relative input price r/w
(again totally differentiate its definition, C̄ = rK + wL, to see this).

Plug the conditional factor demands back into the definition of cost (rK +wL) to
obtain what is called the (minimal) cost function:

C(w, r, Ȳ ) ≡ rK(w, r, Ȳ ) + wL(w, r, Ȳ )
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We have solved now the cost minimization problem. Its solution is the cheapest
input combination (K(w, r, Ȳ and L(w, r, Ȳ ) and the cost function tells us what
the cheapest way to produce a given output quantity actually costs.

A few more things about cost:

• first two definitions:

(marginal cost)MC ≡ δC

δY

(average cost)AC ≡ C

Y

C

Y

MC
AC

C(w,r,Y)

MC, AC

Y

ACMC

To show that MC must intersect AC in the latter’s minimum note that said
minimum is characterized by δAC/δY = 0. Using the definition of AC
(≡ C(Y )/Y ) and explicitely calculating the first order condition should lead you
to the desired result. Intuitively, MC pulls down AC as long as its below and
pulls it up once it’s above.
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• Characteristics of the cost function:
–

δC(w, r, Ȳ )
δw

= L(w, r, Ȳ )

δC(w, r, Ȳ )
δr

= K(w, r, Ȳ )

due to the envelope theorem
– linear homogeneous in factor prices
– concave in prices

• Relationship between MC and returns to scale:

– CRS corresponds to constant MC
– IRS corresponds to decreasing MC
– DRS corresponds to increasing MC
– relate C(Y = 1) vs. C(Y = 2) vs. C(Y = 3) to the changing distances

between isoquants to see this.

Gerald Willmann, Department of Economics, Universität Kiel 12



Profit Maximization

Output is no longer given. We assume that a company chooses inputs and output
in order to maximize profits. This is the standard assumption regarding firms’
behavior. There are alternatives — say maximizing sales b/c that maximizes a
CEO’s prestige — but one can show that if some maximize profits while others do
“strange” things the former will dominate.

How does profit maximization relate to cost minimization: we will show below that
the former implies the latter but not vice versa. That is, a profit maximizing firm
always minimizes costs (how else could the profit maximizing output be really profit
maximizing) but a cost minimizer does not necessarily maximize profits (simply
because the given output might not be the profit maximizing one).
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Mathematically:

max
K,L,Y

profit π = pY − rK − wL

s.t.

Y = f(K,L)

There are (at least) three ways of solving this optimization:

1. plain Lagrange

2. substitute the constraint into the objective

3. short-cut via cost minimization
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1. Forget the first way. It is possible but unnecessarily complicated. Lagrange
adds one dimension to the problem due to the multiplier. You would end up
with a constrained maximization over inputs, output, and the multiplier —
unnecessarily painful.

2. The second way instead reduces the problem by one dimension (we substitute
the constraint into the objective and thereby get rid of output) and in addition
leads to an unconstrained maximization. Let’s briefly see how it works for 2
inputs (because this will prove that profit max implies cost min) and then make
life even easier and do it for only one input.

maxK,Lπ = pf(K,L)− rK − wL

FOCs:

K :
δπ

δK
= pfK − r = 0

L :
δπ

δL
= pfL − w = 0
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Dividing one by the other gives you the same tangency condition (relative input
price equals MRTS) as we got when doing cost minimization. Therefore profit
max implies cost min. To actually solve the optimization we would not divide
one FOC by the other (because it reduces a system of 2 eqtns in two unknowns
(K, L) to one eqtn in two unknowns — dead end) but instead solve the 2 FOCs
for K and L. Pls continue on your own.

Now, let’s do it for one input:

max
L

π = pY − wL = pf(L)− wL

FOC:

pfL − w = 0 or MPL = w/p

This can conceptionally be solved for the
unconditional factor demand L(w, p). In
other words, it can be solved once we
assume a specific prod fct. Then plug

L(w, p) into the prod fct to get the
output supply function Y (w, p). Note
that both these functions will in general
be functions of the whole price vector,
(w, p) in this case.

f(L)

L

pi
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3. Short-cut via cost minimization. Note that here we use what we have proved
above, namely that profit max implies cost min. The number of inputs doesn’t
really matter for this approach so let’s do it for 2 inputs.

maxY π = pY − C(w, r, Y )

FOC:
p−MC = 0

graphically:
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Note that as above only a specific prod fct would allow us to actually solve
for output supply and unconditional factor demands. A specific prod fct would
give rise to a specific cost fct and a specific form of marginal cost. We could
then solve the FOC for Y (p, w, r). Finally, plug this output supply function into
the conditional factor demands (obtained from the cost minimization problem
we already solved) in order to obtain the unconditional factor demand functions
L(w, r, p) and K(w, r, p). Note again that in general these fcts will depend on
the whole price vector.

No matter which way we choose, we obtain the output supply function Y (p, w, r)
and the unconditional factor demands K(p, w, r), L(p, w, r), ... as functions of
the price vector. We can plug these functions into the definition of profit, i.e. into
π = pY − rK − wL to obtain what is called the (maximized) profit function:

π(p, w, r) ≡ pY (p, w, r)− rK(p, w, r)− wL(p, w, r)

This function tells us what maximal profit the company will achieve given the price
vector if it chooses inputs and (consequently) output optimally.
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A few more things about profit:

• Hotelling’s Lemma:

δπ(p, w, r)
δw

= L(p, w, r)

similarly for other factor(s)

δπ(p, w, r)
δp

= Y (p, w, r)

Again this can be proved applying the envelope theorem.

• the profit function is convex in prices

• it is linear-homogeneous in prices
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• Choosing the third way, the second order (sufficient) condition would have been
(always check:)

δ2C(Y )
δY 2

> 0

In other words, increasing marginal cost or DRS!

What about IRS or CRS?

CRS

Y

MC, p

MC’

MC
p

Y

MC, p

IRS
p

MC

Not well defined — either no production or off to infinity.
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