Assignment 1

due: Thursday, March 8, in class
Problem 1: Show whether the following functions are convex or concave:
a) $f\left(x_{1}, x_{2}\right)=\left(0.5 x_{1}^{2}+0.5 x_{2}^{2}\right)^{1 / 2}$
b) $f\left(x_{1}, x_{2}\right)=2 x_{1}^{1 / 2} x_{2}^{1 / 2}$
c) $f(x, y, z)=x^{1 / 2} y^{1 / 2} z^{1 / 2}$

Problem 2: Consider a CES (constant elasticity of substitution) utilty function of the form $U\left(x_{1}, x_{2}\right)=\left(x_{1}^{\rho}+x_{2}^{\rho}\right)^{1 / \rho}$ and suppose the consumer is on her budget constraint, where income is denoted by I and prices by p_{1} and p_{2}.
a) Write down the constrained utility maximization problem.
b) Solve it to find the demand functions $x_{i}(p, I)$.
c) Check the second order conditions.

Problem 3: Consider the objective function $f(x, y)=x^{2}+2 y$ and the following inequality constraints: $x^{2}+y^{2} \leq 5$ and $y \geq 0$.
a) Write down the Lagrangean function and the first-order-conditions.
b) What are the complementary slackness conditions?
c) Find pairs (x, y) that satisfy all the necessary conditions.

