Econ 165 Winter 2002-03 Stanford University TA: Kanda Naknoi

SECTION 8

March 6, 2003

• Fixed exchange rate regime

<u>Tool</u> – Monetary model

Comparison: Fixed vs. Flexible exchange rate regime

	Fixed exchange rate	Flexible exchange rate
(1) Central bank's goal	Set ē.	Set M, or <i>i</i> .
(2) Consequents	M and <i>i</i> get fixed, too.	e gets determined.
	No monetary independence.	Independent monetary policy

Monetary model

(i)	Money market:	m - $p = \eta y$ - λi
(ii)	Relative PPP:	$\pi = \Delta \ln e + \pi^*$
(iii)	Free capital mobility, UIP:	$i - i^* = \Delta \ln e$

Central Bank's balance sheet

Assets	Liabilities
1. Domestic bond, B_t^H	3. Deposits from commercial banks
<u>2. Foreign reserves</u> , B_t^F	4. Money in circulation and the like

 $3 + 4 \equiv$ Money supply. As an accounting identity,

Money supply = Domestic bond + Foreign reserves

• Currency crisis

A currency crisis is a result of a central bank's attempt to implement 2 inconsistent policies.

• An example (Question 2 in HW 4 last year)

Consider a country with a fixed exchange rate and substantial budget deficits. The exchange rate is fixed at 1,100 local currency units per dollar. Initially (at time = 0), half of its money supply is backed by domestic credit and half by foreign reserves. Due to budget deficits, domestic credit increases at a rate of 10% per month. The semi-elasticity of money demand with respect to the interest rate is 2 and $(p^* + \eta y - \lambda i^*)=10$.

(a) What is the initial nominal money supply?

Combine money market condition (m- $p = \eta y$ - λi), and PPP (p=ln e +p*) with UIP ($i - i^* = \Delta \ln e$). Then,

 $m = \ln e - \lambda \Delta \ln e + p^* + \eta y - \lambda i^*.$ (1)

Substitute the given information into (1).

 $m = \ln (1,100) - 0 + 10$ = 17.0031 M = exp(17) = 24,229,112.

(b) When will the country be forced to abandon the peg, i.e. when do we see a crisis?

Recall that we see the crisis <u>when $\ln \underline{e} = \ln \underline{e}$ </u>. As given,

 $\ln \bar{e} = \ln (1,100). \tag{2}$

From the currency crisis model, we know the shadow exchange rate equation.

 $\ln \check{e} = b_t^H + \lambda \mu - (p^* + \eta y - \lambda i^*).$ (3)

(Verify that you can derive (3) from (1) above.) In fact,

$$b_t^H = b_0^H + t \ln(1+\mu).$$
(4)

(Do you know how we got (4)?) At t=0, domestic bond is half of money supply. From (a), we can compute b_0^H .

$$b_0^H = \ln (M/2) = \ln (M) - \ln 2 = 17 - 0.69 = 16.31$$
 (5)

Substitute (5) into (4).

 $b_t^H = 16.31 + t \ln(1.1) \tag{6}$

Substitute (6) into (3), and then equates it to (2).

 $\ln \breve{e} = 16.31 + t \ln(1.1) + 2(0.1) - 10 = \ln (1,100)$

 $t = (7 - 0.2 - 6.31) / \ln(1.1) = 5.14$

The crisis will happen shortly after 5 months.

(c) Depict the money supply and its composition over time.

